CO2 "Well-to-Wheel" Analysis

Confidential

Energy Distribution in a mid-size Car

Mode of driving ... Urban (Highway)

Energy Distribution in a mid-size Car Technology Improvement Area 1

duced vehicle weight proportionally less energy used

Energy Distribution in a mid-size Car Technology Improvement Area 2

Engine Speed-Load Operation Map with efficiency contours

CVT Potential

Example: Cruise on 60 kW power line at CVT speed/load point is more efficient than at other fixed-gear-ratio speed/load points

Energy Distribution in a mid-size Car Technology Improvement Area 3

Downsized high specific output turbo-charged engines

Energy Distribution in a mid-size Car Technology Improvement Area 4

Hybrid Electric Powertrain Fuel Economy Benefit

Hybrid Electric Powertrain Architecture

The Hybrid Electric System seeks to operate the combustion engine at maximum efficiency, or shut it off

- Function 1 Engine stop-start
- Function 2 KE recovery and regeneration
- Function 3 Motor assist
- Function 4 EV drive

Energy Distribution in a mid-size Car Technology Improvement Area 5

Preview of CAL / HCCI Combustion System

CAI / HCCI NOx Emissions

IC Engines: the new challenge

FUEL ECONOMY AND FUN-TO-DRIVE

Confidential

Downsized Engine with Turbocharger and/or Supercharger

Function

- Reduce the oxygen content in the combustible charge
- Lower the combustion temperature, avoid formation of NOx
- Key technology in CAI/HCCI combustion engines
- More effective with cooled EGR

Exhaust Gas Recirculation EGR System for Reduction of NOx Emissions This is Essential

High Pressure Turbocharged engine layout (with EGR system). Duchaussoy et al. (Renault) SAE 2003-01-0629

Turbocharged Engine with Low Pressure EGR System

Source: Ricardo

Reducing NOx and Soot emissions with High EGR and High Boost

Confidential

Challenge

- Today's demand for high rate of EGR (40%+) and high Boost at the same time (technology gap)
- Conventional HP system requires high ∆p to force the high% EGR against high boost pressure
- High% EGR will divert the same% of engine exhaust energy away from the turbocharger
- Alternative LP system takes EGR from turbine exit of turbocharger and with necessary ∆p
- Then the EGR must go into the blower entry and both EGR & air must be boosted (bigger blower)
- In both systems, EGR and Boost work awkwardly in uneasy partnership (need technology jump)

Diesel HCCI / LTC Combustion with Boost and Cooled EGR

Exhaust Stroke

Variable Valve Control methods for Internal EGR by variable interaction between exhaust and intake valves, each valve independently controlled in lift duration and phasing

Evolution of Variable Valve Train Capabilities

Variable Valve Actuation Systems

Mechanical cam driven

Electro-Mechanical camless

Electro-Hydraulic camless

Internal EGR Temperature for different Variable Valve Control EGR **Strategies**

Combustion Chamber EGR

Exhaust Port EGR

Exhaust Port EGR Partly Parallel w. Intake

Exhaust Port EGR with **Dual Exhaust Opening**

Intake Port EGR

Evolution of Gasoline fuelling systems

Fuel Supply System

Gasoline Direct Injection Engine

DI Combustion Chamber Design

Direct injection

DI Stratified Charge Operation

Toyota D4 DISI Engine Combustion

Stratified Locally Rich Combustion Luminous Flame

Late Injection Stratified Combustion

Homogeneous Lean Combustion Blue Flame

Early Injection Homogeneous Combustion

Fuel Economy / Nitric Oxide Tradeoff

Comparison of PM (soot) emission for Diesel, Stratified DISI, Homogeneous DISI

Gasoline Direct Injection Engine

With SI, Gasoline DI and stratified charge has potential of delivering 18% improvement in fuel economy against trade-off in high NOx and soot

With CAI, Gasoline DI and homogeneous charge could deliver similar fuel economy improvement with extra benefits of very stable combustion, ultra-low NOx and no soot

Therefore replace Stratified DISI with Homogeneous DI CAI during low load operation

Multi-mode Operation for DISI & CAI

Confidential

Advanced Diesel Combustion System

Common Rail Fuel Injection System

Flexible Performance Characteristic Common Rail Fuel Injection **Pilot-Injection** Split-Injection Ē Needle Lift Needle Time Time **Multiple Injection** Rate-Shaping Ē Valve Lift Needle Time Time

Flexible Performance Characteristic Common Rail Fuel

- Multiple injection for Advanced Combustion Systems

 Homogeneous Charge Compression
 Ignition HCCI
 Low Temperature
 Combustion LTC
- Close pilot injection for noise and emission control
- Close post injection for emission control

Enablers for Advanced Combustion Avoiding Soot & NOx Formation

Confidential

Summary of Advanced Diesel Engine Green Technologies

Confidential